Data Sets#

morningstar_data.direct.user_items.get_data_set_details(
data_set_id: str,
) DataFrame#

Returns all data points for a given saved data set.

Parameters:

data_set_id (str) – Unique identifier of a Morningstar or user-created data set saved in Morningstar Direct, e.g., “6102286”. Use the get_data_sets or get_morningstar_data_sets functions to discover saved data sets.

Returns:

DataFrame: A DataFrame object with data points. DataFrame columns include:

  • datapointId

  • datapointName

  • displayName

  • currency

  • preEuroConversion

  • sourceId

  • frequency

  • startDate

  • endDate

  • floatStart

  • floatEnd

  • startDelay

  • endDelay

  • diffStart

  • diffEnd

  • compounding

  • calculationId

  • annualized

  • annualDays

  • benchmark

  • riskfree

  • windowType

  • windowSize

  • stepSize

  • requireContinueData

  • fit

  • scalType

  • scalValue

  • scalPercentValue

  • timehorizon

Examples:

Get data points contained in data set “0218-0450”.

import morningstar_data as md

df = md.direct.user_items.get_data_set_details(data_set_id="0218-0450")
df
Output:

datapointId

alias

type

universe

datapointName

calcIsApplyIsraelsenModification

OS01W

Z0

text

Name

NaN

Errors:

AccessDeniedError: Raised when the user is not authenticated.

BadRequestError: Raised when the user does not provide a properly formatted request.

ForbiddenError: Raised when the user does not have permission to access the requested resource.

InternalServerError: Raised when the server encounters an unhandled error.

NetworkExceptionError: Raised when the request fails to reach the server due to a network error.

ResourceNotFoundError: Raised when the requested resource does not exist in Direct.

morningstar_data.direct.user_items.get_data_sets() DataFrame#

Returns all data sets saved by or shared to a user in Morningstar Direct.

Returns:

DataFrame: A DataFrame object with all data sets. DataFrame columns include:

  • datasetId

  • name

  • source

  • shared

Examples:

import morningstar_data as md

df = md.direct.user_items.get_data_sets()
df
Output:

datasetId

name

source

shared

5447361

alpha

DESKTOP

False

5386429

Michael’s Search Ds

DESKTOP

False

Errors:

AccessDeniedError: Raised when the user is not authenticated.

BadRequestError: Raised when the user does not provide a properly formatted request.

ForbiddenError: Raised when the user does not have permission to access the requested resource.

InternalServerError: Raised when the server encounters an unhandled error.

NetworkExceptionError: Raised when the request fails to reach the server due to a network error.

ResourceNotFoundError: Raised when the requested resource does not exist in Direct.

morningstar_data.direct.get_morningstar_data_sets(
universe: str | None = None,
) DataFrame#

Returns all Morningstar pre-defined data sets.

Parameters:

universe (str, optional) – Investment universe code. Example: “FO”. Use get_investment_universes to discover possible values.

Returns:

DataFrame: A DataFrame object with Morningstar data sets. DataFrame columns include:

  • datasetId

  • name

Examples:

Retrieve the Morningstar data set for the open-end fund universe.

import morningstar_data as md

df = md.direct.lookup.get_morningstar_data_sets(universe="FO")
df
Output:

datasetId

name

0026-0020

Snapshot

0026-0447

Sustainability: ESG Risk (Fund)

Errors:

AccessDeniedError: Raised when the user is not authenticated.

ForbiddenError: Raised when the user does not have permission to access the requested resource.

InternalServerError: Raised when the server encounters an unhandled error.

NetworkExceptionError: Raised when the request fails to reach the server due to a network error.

ResourceNotFoundError: Raised when the requested resource does not exist in Direct.