Data Sets#

morningstar_data.direct.user_items.get_data_set_details(
data_set_id: str,
) DataFrame#

Returns all of the data points for a given saved data set.

Parameters:

data_set_id (str) – The unique identifier of a Morningstar data set or user created data set saved in Morningstar Direct. The id string is numeric. For example: “6102286”.

Returns:

A DataFrame object with data set data points data. The DataFrame columns include:

  • datapointId

  • datapointName

  • displayName

  • currency

  • preEuroConversion

  • sourceId

  • frequency

  • startDate

  • endDate

  • floatStart

  • floatEnd

  • startDelay

  • endDelay

  • diffStart

  • diffEnd

  • compounding

  • calculationId

  • annualized

  • annualDays

  • benchmark

  • riskfree

  • windowType

  • windowSize

  • stepSize

  • requireContinueData

  • fit

  • scalType

  • scalValue

  • scalPercentValue

  • timehorizon

Return type:

DataFrame

Examples

Get data points in the data set with data set id “0218-0450”.

import morningstar_data as md

df = md.direct.user_items.get_data_set_details(data_set_id="0218-0450")
df
Output:

datapointId

alias

type

universe

datapointName

calcIsApplyIsraelsenModification

OS01W

Z0

text

Name

NaN

Errors:

AccessDeniedError: Raised when the user is not authenticated.

BadRequestError: Raised when the user does not provide a properly formatted request.

ForbiddenError: Raised when the user does not permissions to access the requested resource.

InternalServerError: Raised when the server encounters an error it does not know how to handle.

NetworkError: Raised when the request fails to reach the server due to a network error.

ResourceNotFoundError: Raised when the requested resource does not exist in Direct.

morningstar_data.direct.user_items.get_data_sets() DataFrame#

Returns all data sets saved by or shared to a user in Morningstar Direct.

Returns:

A DataFrame object with all user data sets data. The DataFrame columns include:

  • datasetId

  • name

  • source

  • shared

Return type:

DataFrame

Examples:

import morningstar_data as md

df = md.direct.user_items.get_data_sets()
df
Output:

datasetId

name

source

shared

5447361

alpha

DESKTOP

False

5386429

Michael’s Search Ds

DESKTOP

False

Errors:

AccessDeniedError: Raised when the user is not authenticated.

BadRequestError: Raised when the user does not provide a properly formatted request.

ForbiddenError: Raised when the user does not permissions to access the requested resource.

InternalServerError: Raised when the server encounters an error it does not know how to handle.

NetworkError: Raised when the request fails to reach the server due to a network error.

ResourceNotFoundError: Raised when the requested resource does not exist in Direct.

morningstar_data.direct.get_morningstar_data_sets(
universe: str | None = None,
) DataFrame#

Returns all Morningstar predefined data sets.

Parameters:

universe (str, optional) – The Morningstar code for an investment universe.

Returns:

A DataFrame object with Morningstar data sets data. The DataFrame columns include:

  • datasetId

  • name

Return type:

DataFrame

Examples

Retrieve the Morningstar data set for the open-end fund universe.

import morningstar_data as md

df = md.direct.lookup.get_morningstar_data_sets(universe="FO")
df
Output:

datasetId

name

0026-0020

Snapshot

0026-0447

Sustainability: ESG Risk (Fund)

Errors:

AccessDeniedError: Raised when the user is not authenticated.

ForbiddenError: Raised when the user does not have permissions to access the requested resource.

InternalServerError: Raised when the server encounters an error it does not know how to handle.

NetworkError: Raised when the request fails to reach the server due to a network error.

ResourceNotFoundError: Raised when the requested resource does not exist in Direct.